2). The viewer must pay attention to several things. One major thing the viewer needs to pay attention to is that the polynomial we are using doesn't have a term for x to the first degree. Thus, the viewer mustn't forget to put in a placeholder when doing synthetic division otherwise the problem can go wrong. Also, the viewer must pay attention to how to put the non factorable quadratic into factor form once the irrational zeroes are found.

## Saturday, September 28, 2013

### SV #1: Unit F Concept 10: Given polynomial of 4th or 5th degree, find all zeroes (real and complex)

2). The viewer must pay attention to several things. One major thing the viewer needs to pay attention to is that the polynomial we are using doesn't have a term for x to the first degree. Thus, the viewer mustn't forget to put in a placeholder when doing synthetic division otherwise the problem can go wrong. Also, the viewer must pay attention to how to put the non factorable quadratic into factor form once the irrational zeroes are found.

## Monday, September 16, 2013

### SP #2: Unite E Concept 7: Graphing polynomials, including: x -int, y-int, zeroes (with multiplicities), end behavior. All polynomials will be factorable.

(1) This problem will go over how to graph a polynomial and find the characteristics stated in the above title. In this particular problem, we will be using the quartic polynomial x^4 - 4x^3 - 12x^2. In order to complete the problem, we will be going through a number of steps, including factoring the polynomial, finding end behavior, solving for the x and y intercepts, calculating extrema and intervals of increase/decrease, and of course graphing.

(2)The reader must pay attention to detail for a little mistake could ruin the entire graph. Also, one thing the reader must be attentive to is the set window when plugging the polynomial into a graphing calculator to graph. This is because the problem results in large numbers and as a result the graph does not fit into the standard zoom.

(2)The reader must pay attention to detail for a little mistake could ruin the entire graph. Also, one thing the reader must be attentive to is the set window when plugging the polynomial into a graphing calculator to graph. This is because the problem results in large numbers and as a result the graph does not fit into the standard zoom.

## Sunday, September 15, 2013

## Monday, September 9, 2013

### SP #1: Unit E Concept 1 Identifying x- intercepts, y- intercepts, vertex (max/min), axis of quadratics and graphing them.

(2) The viewer may not understand the concept if certain things go unnoticed. One of these things is that the viewer must be careful to complete the square correctly otherwise the rest of the information of the problem will be wrong. Additionally, the viewer must pay attention to the numbers meticulously because there is quite some work to do and simple mistakes can cause incorrect answers.

Step 1 includes completing the square. The first picture shows this step. We started with 2x^2 + 12x +6 = 0 and we ended up with 2(x + 3)^2 = 5.

## Thursday, September 5, 2013

Subscribe to:
Posts (Atom)